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Structure, Mechanisms and Kinetics of 
Supramolecular Systems

Biological Systems
– Structure 
1. Functional Biomacromolecular complexes (conc. 0.02 to 0.1 mg/ml)

(e.g. circadean rhythm, kinases)

– Kinetics:
1. Protein and RNA Folding μs – s    (>0.1 ms)
2. Phase transitions in Membranes
3. Formation of unilamellar vesicles
4. Biomineralization ms – s (>0.1s)
5. Mechanical behavior of bones
6. Swelling behavior of wood

Molecular and Supramolecular Systems
1. Solar energy ps – ns (>0.1ns )
2. Nanocatalysis ns – ms   (>0.1 ms)
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TR-SAXS of RNA and Protein Folding Kinetics

Protein folding
– Early phase of compaction – still contentious – debated – more 

experiments are needed.
– Still cannot fold proteins using computers – local biases in the early 

stages are the reason – requires experimental data 
– Bigger proteins have multiple phases, some very fast.

RNA Folding
– RNA folding has more phases, U->Ieq is submsec, and then Ieq->N 

has multiple phases. 
– Comparison of folding pathways for the mesophilic and thermophilic

systems- Difference in cooperativity, energetics and kinetics using 
appropriate mutants.

– Structural details along the folding pathway.
Will  impact folding studies using computer simulation.
– Better Local biases can be used  in simulations
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Ubiquitin

Early collapse is not a 
obligate step (Jacob JMB 
2005)
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Complex Folding Pathway of Catalytic RNAs

The Tetrahymena ribozyme

Woodson, Nature Structure Biology  2000 Catalytic and S domains of Bacillus 
subtilis RNase P RNA: Early collapse 
occurs within a few microseconds
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Kinetics of Phase transitions in Lipid/cholesterol/protein 

P4332, Pn3m, Ia3d and Lα phases

lamellar-to-cubic and intercubic phase transitions of

pure monoolein and with cytochrome c 

Kraineva, J, Narayanan RA,  Kondrashkina E,

Thiyagarajan, P.,Winter, R. Langmuir 21, 3559, 2005.
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Kinetics of Unilamellar Vesicle Formation

Zwitterionic Tetradecyldimethylamine oxide [C14H29NCH32O] 
+ anionic lithium perfluorooctanoate (C7F15COOLi) 
(Weiss et al, PRL 94, 038303, 2005)

Most cationic systems that 
form vesicles will show 
timescales in the 
submillisecond range
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Mechanical Behavior of Biological Nanocomposites
Mechanism of Bone fracture: 
– Mineralized collagen fibers extend only by a fraction of the applied strain, 

while the rest of the deformation takes place in the glue layer.
– Deformation extremely strain-rate dependent
– Could probe only at low strain rates – weak signal 
– Cannot probe at Strain rates relevant for bone fracture under impact
– Shorter data collection times (ms region) necessary to address on how 

bones fracture in a more direct way.
Wood Cells:
– Reversible swelling behavior of wood cell is poorly understood. 
– Kinetics of the deformation of the wood cell of great interest. (Biomimetic) 

• New insights into the development of growth stresses in trees.
• will foster research on new bio-inspired hydrogel-based actuators. 

Not yet possible to perform sub-second SAXD on these systems (signal is 
weak). New things will come out even in the ms regime. 
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MD Simulation  DNA Conformation Fluctuations: 
Snapshots at 5 ps Steps 

(Bio) Molecular Dynamics Occurs on ps Time Scale
X-ray Scattering Resolves Individual Conformers
Time-resolved Opportunity: 

i) Single Molecule (LCLS?)
– ii) Synchronized-Ensemble (Laser induced T-Jumps, charge-transfer, pH-jumps, etc)

X. Zuo
D. Tiede
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Demonstrated Experimental Capability DNA Conformer Structure 
Fingerprinting

MD Ensemble & 
Average (B-form)

MD B’-Like Subset
(~20%)

Experiment (B’- form)

Zuo, Cui, Tiede, et al; PNAS 2006, 103:3534
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Watching Molecular Response to Sudden Perturbation Structure & 
Energy: A Molecular Tsunami
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Scattering Difference Patterns
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WAXS changes measured with 100 ps time resolution 
following metal-to-ligand excited-state charge separation in 
Cu(I) (dimethyl-penanthroline)2.  Following laser-initiated 
formation of the MLCT state, excited state relaxation which 
involves dimethylphenanthroline ligand rearrangement to a 
more planar organization and a solvent coordination at the 
axial position in about 20 ps.  The final [CuII(dmp-)(dmp)]+
charge-separated state lasts for about 1-2 ns. 6/26 – 7/4, 06
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Protein Quakes & Molecular Tsunamis
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Molecular Response to Sudden 
Perturbation of Structure & Energy:

• Electron/Charge Transfer 

• Cofactor Conformational Change
Cis-Trans 

• Temperature Jump
Local- cofactor
Solvent

• pH Jump

TR-WAXS Technique to Watch 
Ensuing Protein Quakes or 
Molecular Tsunamis

-
+
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Time Resolved GISAXS in Nanocatalysis Studies -
Perturb – Multi-probe Experiments

Temperature

MS

Alkene

O2

SAXS/GISAXS

Gas Pulse Laser Pulse

In a pulse IR probe study the reaction occurs in a few seconds 

in E→EO with oxygen pulses, D. A. Bulushevet al. Applied Catalysis, A:, 123, (2), 301(1995))

Laser pulse

Time →
0 t1

Time →
t10 ΔtΔt ΔtΔt ΔtΔt ΔtΔt ΔtΔt ΔtΔt

OO2

Agx or Aux  x = 10 - 50
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Initial stages of Biomineralization Kinetics

TRSAXS on the unseeded formation and growth of colloidal calcium carbonate 
particles. Equimolar aqueous solutions of CaCl2 · 2H2O and Na2CO3 were rapidly 
mixed in a stopped-flow apparatus

The crystal shape and size in the early stage, (1~50ms) could not be resolved 
due to limitation in the flux and the speed of detection.

Data shown : 0.5s step

Langmuir  (2002),  18(22),  8364-8369
J. Phy. Chem. B. 2003, 107, 5123-5125

WAXSSAXS

30s

Full developed
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Typical SAXS data of proteins
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SAXS of Functional Complexes and TR-SAXS on Kinetics

Kinetics
CCD read out time is > 1 sec. we use it as a static 

device and control the sample
> 10 ms time resolution

– Continuous flow – changing flow rate with 
stopped-flow rapid mixer 

~ 100 microsec to  ms time resolution
– Microchannel mixer – flow rate (higher flow rate)

High sample consumption 
– 2 (5 ms) to 20 mg (500 μsec) of sample 
– Faster time resolution will require prohibitively 

higher amount
– Not desirable: this impedes science
– Higher brilliance and faster detectors needed

Functional Complexes

• FPLC to separate the complexes and bring them to the X-ray 
window (highly dilute)
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Instrument requirements and sample control

Cleaner beams, less background, more reliable background subtraction
– our biggest problems.

Innovation of sample control 
– Ability to selectively obtain data on functional complexes using

fractionation 
– Conformational change upon light or T-jump or pH jump, ionic 

conditions?
– Stopped-flow 
– Microfluidics
– Pressure jump
– Reduction of radiation damage

– Flames
– Film growth
– Catalysis



18

Area Detector requirements

High count-rate capability (> 1x106 Xph/s/pixel) (single photon counting) 
Fast acquisition (~microsec time domain)
Histogramming capability of SAXS data for different times (TRSAXS)
Large pixelated area (200mm x 200mm) 
High dynamic range (> 106) (Similar to single photon counting)
High sensitivity ( ~ 80%) 
High spatial resolution (Low angle ~60μm FWHM)
Operation in vacuum

Silicon based pixel detectors may be a better choice
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Computing Needs for Ultrafast SAXS

Fast image data reduction 

High-speed and data storage with high-availability

Grid computing for online analysis capabilities
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